Thermal expansion of select $M_{n+1}AX_n$ (*M*=early transition metal, A=A group element, X=C or N) phases measured by high temperature x-ray diffraction and dilatometry

T. H. Scabarozi,^{1,2} S. Amini,² O. Leaffer,² A. Ganguly,² S. Gupta,² W. Tambussi,¹ S. Clipper,¹ J. E. Spanier,² M. W. Barsoum,² J. D. Hettinger,¹ and S. E. Lofland^{1,a)} ¹Department of Physics and Astronomy, Rowan University, Glassboro, New Jersey 08028, USA ²Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA

(Received 18 July 2008; accepted 4 October 2008; published online 14 January 2009)

Herein we report on a systematic investigation of the thermal expansion of select $M_{n+1}AX_n$ phases. The bulk dilatometric thermal expansion coefficient α_{dil} was measured in the 25-1200 °C temperature range and the thermal expansion of more than 15 of these phases was studied by x-ray diffraction in the 25-800 °C temperature range. The coefficient of thermal expansion for the *a* axis α_a ranged between $(2.9 \pm 0.1) \times 10^{-6} \circ C^{-1}$ (Nb₂AsC) and $(12.9 \pm 0.1) \times 10^{-6} \circ C^{-1}$ (Cr₂GeC) while the coefficient for the c axis (α_c) ranged between (6.4 ± 0.2) × 10⁻⁶ °C⁻¹ (Ta₂AlC) and $(17.6 \pm 0.2) \times 10^{-6}$ °C⁻¹ (Cr₂GeC). Weak anisotropy in the thermal expansion was seen in most phases, with the largest value of α_c/α_a belonging to Nb₂AsC. The Grüneisen parameters along the a and c directions were calculated from ab initio values for the elastic compliances and were relatively isotropic. A good correlation was found between the thermal expansion anisotropy and the elastic constant c_{13} and we conclude that the anisotropy in thermal expansion is related to the bonding between the M-A elements. © 2009 American Institute of Physics. [DOI: 10.1063/1.3021465]

I. INTRODUCTION

The $M_{n+1}AX_n$ (MAX) phases (n=1-3) are layered hexagonal compounds, in which near close-packed layers of M(early transition metals) are interleaved with layers of group A element (mostly IIIA and IVA), with the X-atoms (C and/or N) filling the octahedral sites between the M layers. Most of these phases were synthesized in powder form in the 1960s by Nowotny.¹ At this time it is fairly well established that these phases have an unusual and sometimes unique combination of properties.^{2–16} They are elastically stiff, have relatively low thermal expansion coefficients, and have good thermal and electrical conductivities.^{2,17} They are relatively soft, with Vickers hardness values of 2-8 GPa, easily machinable, thermal shock, and damage tolerant. Some are fatigue, creep, and oxidation resistant.¹⁸ At higher temperatures, they can undergo a brittle-to-plastic transition.¹² Some, such as Ti₂AlC, are exceptionally oxidation resistant and are candidate materials for high temperature structural industrial applications.¹⁹

Elastic measurements indicate that these materials are stiff, particularly in shear. In particular, some M_2AX (211) materials, such as Ti_2SC (Ref. 20), show enhanced elastic properties although they are not as readily machinable as other MAX-phase materials. It is believed that the origin of the increased modulus in this material is due to stronger M-A bonds. A similar study done on Nb₂AsC showed higher compressibility in the *a*-direction than the *c*-direction, which can be associated with the position of Nb being closer to the As.²¹

In the M_3AX_2 (312) materials, increased stiffness is a result of a higher fraction of the stronger M-X bonds. The most studied MAX phase, Ti₃SiC₂, exhibits weak elastic anisotropy associated with two different Ti-C bonds and Si vibrating preferentially along the *a* axis.^{22,23} Compressibility studies²⁴ of $Ti_3Si_{1-x}Ge_xC_2$ found solid-solution softening occurred while investigations of Ti₃AlCN and Ti₂AlC_{0.5}N_{0.5} suggest the formation of vacancies on both the Al and N sites leading to the decrease in bulk moduli.²⁵ In M_4AX_3 compounds, there are even less weaker M-A bonds and the M-X bonds are shorter and stiffer, as reported for Ti₄AlN₃.²⁶ An exception is seen in Ta₄AlC₃ where high-pressure diffraction studies reveal little anisotropy in compressibility attributed to lattice softening due to differences in atomic packing.²⁷ The purpose of this paper is to further investigate the role of bonding anisotropies in the MAX phases by measuring the thermal expansion of a large number of these phases by high temperature x-ray diffraction (XRD).

II. EXPERIMENTAL DETAILS

All samples were synthesized by either hot isostatic pressing or hot pressing, providing fully dense and predominantly single phase microstructures. Details of processing of Cr_2AlC and Ta_2AlC can be found in Ref. 18, $Ti_2Al(C_{0.5}N_{0.5})$ in Ref. 28, $Ti_3Al(C_{0.5}N_{0.5})_2$ in Ref. 29, Ti_3SiC_2 in Ref. 4, Ti₃GeC₂ and Ti₃Si_{0.25}Ge_{0.75}C₂ in Ref. 30, V₂AlC, V₂AsC, Nb₂AlC, Nb₂SnC, Ti₂AlC, and Hf₂InC in Ref. 31, Ti₃AlC₂ and Ti₄AlN₃ in Ref. 32, Nb₂AsC in Ref. 33, Cr₂GeC in Ref. 34, Ti₂AlN in Ref. 35, and Ti₂SC in Ref. 36.

To synthesize the V₂GeC samples, V and C powders (Alfa Aesar, Ward Hill, MA) and Ge powder (Cerac Inc.,

^{a)}Electronic mail: lofland@rowan.edu.

Milwaukee, WI) were mixed in stoichiometric proportions, ball milled for 12 h, and dried at 150 °C for 24 h. The powder mixtures were sealed in graphite foil, placed in a graphite die, heated at 10 °C/min in a graphite-heated vacuum atmosphere hot press (Series 3600, Centorr Vacuum Industries, Somerville, MA), annealed at 875 °C for 3 h, and then hot pressed at 1350 °C for 6 h under a load that corresponded to a stress of 45 MPa.

The bulk thermal expansion measurements were performed with a dilatometer (model 1161, Anter Corporation Unitherm, Pittsburgh, PA) on electric-discharge machined bar-shaped specimens with dimensions of $\sim 3 \times \sim 3 \times$ $\sim 20 \text{ mm}^3$. The heating and cooling rates were set at 3 K/min. To avoid oxidation, the dilatometric experiments were carried out under an atmosphere of ultrahigh pure Ar gas.

The high-temperature XRD diffractometer (Scintag X_2) was configured with a furnace (Edmund Bühler HDK-2.3). The diffractometer utilized Cu K α radiation (40 mA and 45 kV) and a Si(Li) Peltier-cooled solid-state detector. Data were taken from $5^{\circ} - 100^{\circ}$ in steps of 0.02° with hold times of 1 or 2 s/step. MAX phase powders were mixed together with Si and Cu powders at ratios such that the intensity values of the strongest diffraction lines of the various materials were roughly equal at room temperature. The Si powder was mixed with the MAX phase to serve as a standard for alignment. The Cu powder was used to measure the mixture temperature via knowledge of its thermal expansion. From a slurry mixture, a 50–75 μ m coating was applied either on a substrate (Zr, Mo, or sapphire) or directly on the Pt/Rh-10% heating element. A Pt/Rh-30% thermocouple was bonded to the back of the heater for temperature control. To minimize possible oxidation, the measurements were carried out either under vacuum (10^{-4} Torr) or in a He atmosphere from room temperature to 1000 °C. The heating rate was 20 °C/min with a 15 min hold time prior to each scan. Spectra were fit to a Pearson7 line shape by Scintag software DMSNT 1.36b. Lattice refinements were done with XLAT.³⁷ The thermal expansion for Si was taken from Ref. 38 and that of Cu from NIST.³⁹

Ab initio density functional calculations were conducted with the Vienna *ab initio* simulation package (VASP) (Ref. 40) and the MEDEA (Ref. 41) interface. All calculations were carried out using the projector augmented wave^{42,43} and the generalized gradient approximation.⁴⁴ Relaxed structures were calculated and energies were converged with respect to the *k*-mesh with MEDEA's convergence method. Subsequent calculations were carried out with the *k*-mesh resulting from the convergence. Elastic properties were calculated with MEDEA's mechanical and thermomechanical module,⁴⁵ which calculates the stress tensor from changes in energy when the unit cell is strained. Strains of 0.005, 0.01, and 0.02 were simulated. The reported elastic constants are from a leastsquares fitting of the values calculated for each strain.

III. RESULTS AND DISCUSSION

Figure 1 shows the dilatometric thermal expansion α_{dila} as a function of temperature *T* for select compositions. The

FIG. 1. (Color online) Thermal expansion as a function of temperature for selected MAX phases from dilatometer measurements. Curves have been shifted vertically for clarity.

curves are shifted vertically for clarity. The α_{dila} values, reported in column 9 of Table I, were calculated by a least-squares fit of both the heating and cooling curves in the temperature range mentioned therein. Also included in the table are previously reported values.

Figure 2 shows several XRD patterns of Cr_2GeC at different temperatures. It is clearly seen the Cr_2GeC and Cu peaks noticeably shift to the left with increasing temperature. The shift for Si is much less indicating that, (i) its thermal expansion is smaller and, (ii) more importantly, that the sample height remains effectively constant, minimizing corrections due to focus.

Figure 3 shows the temperature dependencies and estimated errors of the lattice constants of more than 15 MAX

FIG. 2. (Color online) High temperature XRD of Cr_2GeC . Shifting peaks can be seen due to atomic spacing increasing as a function of temperature. Silicon and copper are used as internal standards for alignment and temperature determination, respectively. The Pt peak is associated with the heater strip.

TABLE I. Lattice parameters and thermal expansions for the MAX-phases studied by XRD (numbers in parentheses are estimated standard deviations in the last significant figure of the refined parameter).

										Other wo	ork	
Compound	a (Å)	с (Å)	$\alpha_a \ (10^{-6} \ ^{\circ}\mathrm{C}^{-1})$	$(10^{-6} \circ \mathrm{C}^{-1})$	Anisotropy (α_c / α_a)	c/a	$\alpha_{\rm av} \ (10^{-6} \ ^{\circ}{\rm C}^{-1})$	$\begin{matrix} \alpha_{\rm dila} \\ (10^{-6} \ ^{\circ}{\rm C}^{-1}) \end{matrix}$	$\alpha_a (10^{-6} \circ \mathrm{C}^{-1})$	$(10^{-6} \circ C^{-1})$	$\alpha_{\rm av}$ (10 ⁻⁶ °C ⁻¹)) Ref.
Ti ₄ AlN ₃	2.9884(1)	23.3810(35)	8.3(2)	8.3(9)	1.00(1)	7.824	8.3(5)	9.7(2) ^a 9.1(5)	9.6(1) ^b	8.8(1) ^b	9.4(1) ^b	46
								$9.1(2)^{c}$	$8.4(1)^{d}$	$9.3(10)^{d}$	$8.6(4)^{d}$	22
Ti ₃ SiC ₂	3.0663(1)	17.6510(18)	8.9(1)	10.0(2)	1.12(2)	5.756	9.3(2)	$9.1(2)^{e}$	$8.6(1)^{b}$	$9.7(1)^{b}$	$9.1(2)^{b}$	23
Ti ₃ AlCN	3.0442(2)	18.3890(11)	6.0(2)	11.3(2)	1.89(2)	6.041	7.8(2)	7.5(5)				
Ti ₃ GeC ₂	3.0873(2)	17.8071(10)	8.1(2)	9.7(2)	1.20(3)	5.768	8.6(2)	7.8(2)				
Ti ₃ Si _{0.25} Ge _{0.75} C ₂	3.0855(5)	17.7960(18)	8.8(6)	11.1(3)	1.27(6)	5.768	9.6(5)					
Ti ₃ AlC ₂	3.0698(1)	18.4998(2)	8.3(1)	11.1(1)	1.33(1)	6.026	9.2(1)	$9.0(2)^{f}$				
Ti ₂ AlCN	3.0247(1)	13.6046(5)	8.4(1)	8.8(1)	1.05(2)	4.498	8.5(1)	$10.5(2)^{a}$ $8.2(2)^{g}$				
Ti ₂ AlN	2.9872(2)	13.6108(6)	10.6(2)	9.75(2)	0.92(3)	4.556	10.3(2)	$8.8(2)^{a}$	$8.6(2)^{d}$	$7.0(5)^{d}$	$8.1(5)^{d}$	28
Ti ₂ SC	3.2046(1)	11.2092(3)	8.6(1)	8.7(2)	1.01(2)	3.498	8.7(1)	9.3(6)	$8.5(5)^{d}$	$8.8(2)^{d}$	$8.6(6)^{d}$	47
V ₂ AlC	2.9176(3)	13.1281(9)	9.1(2)	10.0(7)	1.10(16)	4.500	9.4(10)	9.4(5)	$9.34(5)^{d}$	$9.48(4)^{d}$	$9.39(5)^{d}$	48
V ₂ GeC	3.0034(1)	12.2527(9)	6.9(1)	15.8(3)	2.27(1)	4.080	9.9 (2)	9.4(6)				
V ₂ AsC	3.1127(1)	11.3884(4)	7.2(1)	14.0(1)	1.92(1)	3.659	9.5(1)					
Cr ₂ GeC	2.9500(2)	12.1010(10)	12.9(1)	17.6(2)	1.37(1)	4.102	14.5(2)	9.5(5)				
Cr ₂ AlC	2.8571(2)	12.8208(6)	12.8(3)	12.1(1)	0.94(3)	4.487	12.6(2)	12.8(5)				
Nb ₂ SnC	3.2376(2)	13.8135(4)	6.6(4)	14.5(2)	2.17(2)	4.267	9.3(3)	$7.8(2)^{h}$ $7.5(2)^{g}$				
Nb ₂ AlC	3.1063(1)	13.8783(11)	8.8(2)	6.8(3)	0.78(6)	4.468	8.1(2)	$8.7(2)^{i}$				
Nb ₂ AsC	3.3235(1)	11.9036(3)	2.9(1)	10.6(1)	2.57(1)	3.582	5.5(1)	7.3(5)				
Hf ₂ InC	3.3085(1)	14.7351(10)	7.2(1)	7.6(2)	1.05(3)	4.454	7.3(2)	$7.6(2)^{j}$				
Ta ₂ AlC	3.0804(2)	13.8630(7)	9.2(2)	6.4(2)	1.43(3)	4.5	8.3(2)	7.2(6)				
Ti ₂ AlC								$8.8(2)^{g}$ $8.2(2)^{a}$	7.1(3) ^d	10.0(5) ^d	8.1(5) ^d	28

^aReference 28.

^bNeutron diffraction. ^cReference 22.

Reference

^dXRD. ^eReference 23.

^fReference 49.

^gReference 2.

^hReference 50.

ⁱReference 51.

phases measured in this work. Table I lists the values of α_a and α_c , as well as previously reported high-temperature XRD or neutron diffraction results. The values obtained from diffraction (column 8) are compared with the dilatometric values (column 9) by assuming the average coefficient of thermal expansion, $\alpha_{av} = (2/3 \ \alpha_a + 1/3 \ \alpha_c)$. In most cases, the results agree reasonably well with those of other measurements. For example, the presently reported values for α_a and α_c for Ti₃SiC₂, $(8.9 \pm 0.1) \times 10^{-6}$ and $(10.0 \pm 0.2) \times 10^{-6} \text{ °C}^{-1}$, respectively, are in excellent agreement with previous results.^{22,23} The same is true for V₂AlC and Ti₂SC.^{53,54} The agreement is not as good for Ti₂AlN,²⁸ which may reflect variations in stoichiometry.^{35,55}

Figure 4(a) compares α_{av} of the MAX phases (solid circles) with those of their corresponding *MX* (open squares). From this plot it is reasonable to conclude that a relationship exists between the two. With the notable exception of Nb₂AsC, which is unusual, as noted above, the α values of the binaries are indeed lower than those of the

corresponding MAX phase, suggesting that, on the average, the M-X bonds are stronger than the M-A bonds, a not too surprising conclusion.

The anisotropy ratio (α_c/α_a) , listed in column 6 of Table I, for the most part, is >1, as might be anticipated since the *c* direction involves the relatively weaker M-A bonds. However, as seen in Fig. 5(a), the anisotropy is mostly a function of the A-group element.

In an isotropic system, the volume thermal expansion α_V is given by

$$\alpha_V = \gamma \frac{c_v}{BV} \tag{1}$$

where γ is the Grüneisen parameter, a measure of the anharmonicity, which gives rise to thermal expansion, *B* is the bulk modulus, *V* is the molar volume, and c_V is the molar specific heat at constant volume. In Table II are the lattice constants *a*, *B*, and γ for the cubic binary carbides, assuming that the Dulong–Petit law applies, i.e., $c_V=3mR$, where *m* is

^jReference 52.

FIG. 3. (Color online) Temperature dependence of the lattice constants for (a) various Ti–Al–X phases, (b) various M_2AC (M=Cr or V, A=Al, As, or Ge) phases, (c) various M_2AC (M=Nb, Hf, or Ta, A=Al, As, In, or Sn) phases, and (d) various Ti–A–C (A=Si, Ge, or S) phases.

Downloaded 09 Mar 2009 to 144.118.30.27. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp

FIG. 4. (Color online) (a) Average thermal expansion as a function of the *M*-group element for MAX phase materials (solid markers). (b) Average Grüneisen parameter as a function of *M*-group element for MAX phase materials (solid markers). In both figures, open markers represent the values for the respective binary carbide.

the number of atoms per unit cell and *R* is the ideal gas constant. Where possible, we used XRD data for the thermal expansion and diamond anvil cell measurements of the bulk moduli. For the most part, the values are between 1.5 and 2, as expected for metallic compounds. The outlier is VC, which is always substoichiometric.⁶³

When the average Grüneisen parameters of the ternaries and binaries are plotted on the same figure [Fig. 4(b)], there is little correlation between the two, which indirectly implicates the A-group element in the thermal expansion anisotropies observed. This notion can be tested further. In a system with axial symmetry (i.e., hexagonal, tetragonal, or rhombohedral), one can write down the Grüneisen parameters for the *a* and *c* directions, as γ_a and γ_c , respectively, as

$$\gamma_a = \frac{V}{C_n} [(c_{11} + c_{12})\alpha_a + c_{13}\alpha_c], \qquad (2a)$$

TABLE II. Lattice parameter and properties for binary carbides.

Binary carbide	a (Å)	$\alpha (10^{-6} \circ C^{-1})$	B (GPa)	γ
TiC	4.328	9.44 ^a	248 ^b	1.72
VC	4.153	7.3 [°]	258 ^d	1.20
ZrC	4.698	7.37 ^a	195 ^e	1.35
NbC	4.47	$7.74^{\rm f}$	274 ^g	1.71
HfC	4.639	7.37 ^f	242 ^h	1.61
TaC	4.456	7.45 ^f	345 ^e	2.06
Cr ₃ C ₂		10.4 ^c		

^aReference 56.

^bReference 57. ^cReference 58.

^dReference 59.

^eReference 27.

^fReference 60.

^gReference 61

^hReference 62.

$$\gamma_c = \frac{V}{C_v} (2c_{13}\alpha_a + c_{33}\alpha_c), \qquad (2b)$$

where c_{ij} are the elastic stiffness constants.⁶⁴

Since MAX phase single crystals large enough for the measurement of the various elastic constants do not exist to date, one must rely on *ab initio* calculations for those constants to proceed with the analysis. Nonetheless, one can check the validity of the calculated numbers by comparing them with the measured values for *B*, the shear modulus *G*, and the compressibilities along the *a* and *c* directions, κ_a and κ_c , respectively. The Voigt averages, which provide a method of connecting the calculated elastic constants to the measured parameters, yield

$$B = \frac{2(c_{11} + c_{12}) + 4c_{13} + c_{33}}{9},$$
(3a)

$$G = \frac{1}{30}(7c_{11} - 5c_{12} + 2c_{33} - 4c_{13} + 12c_{44}).$$
(3b)

For hydrostatic compression, one finds

$$\kappa_a = \frac{c_{33} - c_{13}}{c_{33}(c_{11} + c_{12}) - 2c_{13}^2},\tag{4a}$$

$$\kappa_c = \frac{c_{11} + c_{12} - 2c_{13}}{c_{33}(c_{11} + c_{12}) - 2c_{13}^2}.$$
 (4b)

The calculated elastic constants, as well as the measured values, are listed in Table III.

While the agreement between the calculated and measured values for *B*, *G*, κ_a , and κ_c is not exact, ^{16,17,24–26,49,66–68} they are generally close except for the latter two, which are particularly sensitive to the value of c_{13} . It is to be noted that there has been, in general, excellent agreement between the calculated and observed Raman spectra,⁶⁹ further evidence that the calculated elastic constants are quite reasonable.

As seen in Table IV, the calculated γ values from $c_V = 3mR$, where m=4(n+1) for the MAX phases, range between 1.5 and 2.5, as expected for metallic compounds. Figure 4(b) shows that the average Grüneisen parameter is ef-

Downloaded 09 Mar 2009 to 144.118.30.27. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp

FIG. 5. (Color online) (a) Anisotropy in thermal expansion vs A-group elements. (b) Anisotropy in the Grüneisen parameter vs A-group column. (c) The compliance tensor element c_{13} vs the A-group column.

fectively constant for a given M-group element but does not obviously relate to that of the corresponding binary carbide.

Comparing Figs. 4(a) and 4(b), one notices a direct correlation between α and γ . From Eq. (1), $\alpha \propto \gamma/BV$ and, thus, *BV* is effectively constant for all MAX phases of any given family. This relationship has been found in a variety of other class of solids such as halides,⁷⁰ oxides,⁷⁰ and chalcogenides,⁷¹ as well as for binary carbides.⁵³ The correlation for the latter, however, has not been nearly as good as the results shown here for the ternaries. The discrepancies for the binary carbides have been partly attributed to stoichiometry and microstructure.⁷²

Note that the anisotropies in the calculated γ values [Fig. 5(b)] are small compared to those of the corresponding α values [Fig. 5(a)]. This reflects the fact that the anharmonicity is relatively isotropic and suggests that the anisotropy in thermal expansion is related predominantly to the anisotropy in the elastic constants, which must be a consequence of the bonding of the *M* element to the A group. Confirming this notion is the fact that the anisotropy in α of the 211 phases correlates well with c_{13} [Fig. 5(c)]. This is not too surprising

since c_{13} compares the bonding strengths in the *a* and *c* planes of hexagonal crystals. In Fig. 5(c) Nb₂AlC is an outlier, most probably a direct result of the exceptionally strong Nb–Al bonds.⁷³ Nb₂SnC is also an outlier, but in the opposite sense, in that α_c is considerably larger than α_a . Using the same logic, it is reasonable to conclude that the Nb–Sn bonds are weaker than average, which is not reflected in c_{13} . Lastly we note that the good correlation found in Fig. 5(c) indirectly confirms the validity of both the thermal expansion measurements and *ab initio* calculations, which are in good agreement with other similar calculations on the MAX phases given in the literature.^{74–81}

IV. CONCLUSIONS

We measured the thermal expansion of a number of MAX phases. Overall, anisotropy between the *a* and *c* axes was mild for most of them, the largest belonging to Nb₂AsC. The Grüneisen parameters determined from *ab initio* calculated elastic constants are consistent with expectations for metals and are relatively isotropic. The anisotropy in thermal

	Calculated elastic parameters									Measured elastic parameters					
Compound	<i>с</i> ₁₁ (GPa)	с ₁₂ (GPa)	<i>c</i> ₁₃ (GPa)	с ₃₃ (GPa)	с ₄₄ (GPa)	B (GPa)	G (GPa)	$\begin{array}{c} 10^{3}\kappa_{a}\\ (\mathrm{GPa^{-1}}) \end{array}$	$\begin{array}{c} 10^3\kappa_c\\ (\mathrm{GPa}^{-1})\end{array}$	Ref.	B* (GPa)	$\begin{array}{c} 10^3 \kappa_a^{\ a} \\ (\mathrm{GPa}^{-1}) \end{array}$	$\begin{array}{c} 10^3 \kappa_c ^{\rm a} \\ ({\rm GPa^{-1}}) \end{array}$	Ref.	G ^b (GPa)
Ti ₄ AlN ₃	405	94	102	361	160	196	153	1.63	1.85	с	216(2)	1.30	1.60	26	127 ^d
Ti ₃ SiC ₂	365	125	120	375	122	204	122	1.65	1.61	с	206(6)	0.92	2.02	52	138 ^e
Ti ₃ GeC ₂	355	143	80	404	172	191	144	1.72	1.79	с	197(4)	1.60	1.60	24	141 ^e
Ti ₃ AlC ₂	361	75	70	299	124	161	132	1.90	2.46	65	226(3)	0.80	2.10	25	124^{f}
Ti ₂ AlN	312	69	86	283	127	154	120	2.12	2.25	с	169(3)	1.80	1.90	51	120 ^g
Ti ₂ SC	339	90	100	354	162	179	139	1.93	1.74	с	191(3)	1.42	2.20	46	125 ^h
V ₂ AlC	346	71	106	314	151	175	136	1.92	1.89	65	201(3)	1.00	2.20	16	116 ⁱ
V ₂ GeC	311	122	140	291	158	191	116	1.74	1.76	с					
V ₂ AsC	334	109	157	321	170	204	128	1.77	1.39	с					
Cr ₂ GeC	315	145	132	339	91	199	91	1.71	1.62	с					80 ^j
Cr ₂ AlC	384	79	107	382	147	193	146	1.79	1.62	65	165(2)	2.10	1.70	16	105 ⁱ
Nb ₂ SnC	268	86	119	267	98	161	89	2.24	1.75	с					
Nb ₂ AlC	341	94	117	310	150	183	129	1.80	1.87	65	209(2)	1.40	1.40	16	117^{i}
Nb ₂ AsC	334	104	169	331	167	209	127	1.84	1.14	с	224(2)	1.30	0.70	21	
Hf ₂ InC	284	69	65	243	91	134	99	2.30	2.88	с					
Ta ₂ AlC	339	113	130	326	154	194	126	1.73	1.69	с					
Ti ₂ AlC	308	55	60	270	111	137	117	2.31	2.68	65	186(2)	1.10	2.40	16	118 ⁱ

^aDetermined from diamond-anvil cell XRD studies.

^bDetermined from velocity of sound measurements.

^cPresent work.

^dReference 66.

^eReference 30.

^fReference 49.

^gReference 27. ^hReference 36.

ⁱReference 17.

^jReference 34.

bonding. The bulk modulus of any given family of compounds is inversely related to the unit cell volumes.

ACKNOWLEDGMENTS

We gratefully acknowledge the support of the National Science Foundation through Grant No. DMR-0503711. The authors acknowledge the support of C. Lunk for assistance with the XRD equipment.

expansion is related to the bonding between M-A, while the magnitude of the thermal expansion is controlled by M-X

- ¹G. Nowotny, Prog. Solid State Chem. 2, 27 (1970).
- ²M. W. Barsoum, Prog. Solid State Chem. 28, 201 (2000).
- ³M. W. Barsoum, D. Brodkin, and T. El-Raghy, Scr. Mater. 36, 535 (1997).
- ⁴M. W. Barsoum and T. El-Raghy, J. Am. Ceram. Soc. **79**, 1953 (1996).
- ⁵M. W. Barsoum and T. El-Raghy, J. Mater. Synth. Process. 5, 197 (1997).
- ⁶M. W. Barsoum and T. El-Raghy, Metall. Mater. Trans. A **30**, 363 (1999).
- ⁷M. W. Barsoum, T. El-Raghy, C. J. Rawn, W. D. Porter, H. Wang, A. Payzant, and C. Hubbard, J. Phys. Chem. Solids **60**, 429 (1999).

⁸M. W. Barsoum, L. Farber, T. El-Raghy, and I. Levin, Metall. Mater. Trans. A **30**, 1727 (1999).

⁹M. W. Barsoum, G. Yaroschuck, and S. Tyagi, Scr. Mater. **37**, 1583 (1997).

¹⁰T. El-Raghy and M. W. Barsoum, J. Am. Ceram. Soc. 82, 2849 (1999).

¹¹M. W. Barsoum, T. El-Raghy, and L. Ogbuji, J. Electrochem. Soc. 144, 2508 (1997).

¹²T. El-Raghy, M. W. Barsoum, A. Zavaliangos, and S. R. Kalidindi, J. Am. Ceram. Soc. 82, 2855 (1999).

¹³T. El-Raghy, A. Zavaliangos, M. W. Barsoum, and S. R. Kalidindi, J. Am. Ceram. Soc. 80, 513 (1997).

¹⁴L. Farber, M. W. Barsoum, A. Zavaliangos, T. El-Raghy, and I. Levin, J.

Downloaded 09 Mar 2009 to 144.118.30.27. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp

TABLE IV. Calculated Grüneisen parameters of MAX phase materials.

Compound	γ_a	γ_c	$\langle \gamma angle$	Anisotropy (γ_c / γ_a)
Ti ₄ AlN ₃	1.36	1.28	1.33	0.94
Ti ₃ SiC ₂	1.61	1.70	1.64	1.06
Ti ₃ GeC ₂	1.42	1.54	1.46	1.09
Ti ₃ AlC ₂	1.33	1.36	1.34	1.02
Ti ₂ AlN	1.55	1.46	1.52	0.94
Ti ₂ SC	1.38	1.45	1.40	1.05
V ₂ AlC	1.41	1.48	1.44	1.05
V ₂ GeC	1.51	1.89	1.63	1.25
V ₂ AsC	1.56	1.95	1.69	1.25
Cr ₂ GeC	2.27	2.58	2.38	1.14
Cr ₂ AlC	1.98	2.01	1.99	1.02
Nb ₂ SnC	1.54	2.06	1.72	1.34
Nb ₂ AlC	1.62	1.46	1.56	0.90
Nb ₂ AsC	1.26	1.69	1.40	1.34
Hf ₂ InC	1.10	1.01	1.07	0.92
Ta ₂ AlC	1.71	1.54	1.66	0.90
Ti ₂ AlC	2.41	1.99	2.27	0.83

¹⁵I. M. Low, S. K. Lee, B. Lawn, and M. W. Barsoum, J. Am. Ceram. Soc. **81**, 225 (1998).

- ¹⁶B. Manoun, R. P. Gulve, S. K. Saxena, S. Gupta, M. W. Barsoum, and C. S. Zha, Phys. Rev. B **73**, 024110 (2006).
- ¹⁷J. D. Hettinger, S. E. Lofland, P. Finkel, T. Meehan, J. Palma, K. Harrell, S. Gupta, A. Ganguly, T. El-Raghy, and M. W. Barsoum, Phys. Rev. B 72, 115120 (2005).
- ¹⁸M. W. Barsoum and M. Radovic, *Encyclopedia of Materials: Science and Technology*, edited by K. H. J. Buschow (Elsevier, Amsterdam, 2004).
- ¹⁹M. W. Barsoum, N. Tzenov, A. Procopio, T. El-Raghy, and M. Ali, J. Electrochem. Soc. 148, C551 (2001).
- ²⁰T. H. Scabarozi, S. Amini, P. Finkel, O. D. Leaffer, J. E. Spanier, M. W. Barsoum, M. Drulis, H. Drulis, W. M. Tambussi, J. D. Hettinger, and S. E. Lofland, J. Appl. Phys. **104**, 033502 (2008).
- ²¹R. S. Kumar, S. Rekhi, A. L. Cornelius, and M. W. Barsoum, Appl. Phys. Lett. 86, 111904 (2005).
- ²²B. Manoun, S. K. Saxena, H. P. Liermann, and M. W. Barsoum, J. Am. Ceram. Soc. 88, 3489 (2005).
- ²³M. W. Barsoum, T. El-Raghy, C. J. Rawn, W. D. Porter, H. Wang, E. A. Payzant, and C. R. Hubbard, J. Phys. Chem. Solids 60, 429 (1999).
- ²⁴B. Manoun, H. Yang, S. K. Saxena, A. Ganguly, M. W. Barsoum, B. E. Bali, Z. X. Liu, and M. Lachkar, J. Alloys Compd. **433**, 265 (2007).
- ²⁵B. Manoun, S. K. Saxena, G. Hug, A. Ganguly, E. N. Hoffman, and M. W. Barsoum, J. Appl. Phys. **101**, 113523 (2007).
- ²⁶B. Manoun, S. K. Saxena, and M. W. Barsoum, Appl. Phys. Lett. **86**, 101906 (2005).
- ²⁷B. Manoun, S. K. Saxena, T. El-Raghy, and M. W. Barsoum, Appl. Phys. Lett. 88, 201902 (2006).
- ²⁸T. El-Raghy, M. Ali, and M. W. Barsoum, Metall. Mater. Trans. A **31A**, 1857 (2000).
- ²⁹M. Radovic, A. Ganguly, M. W. Barsoum, T. Zhen, P. Finkel, S. R. Kalidindi, and E. Lara-Curzio, Acta Mater. 54, 2757 (2006).
- ³⁰P. Finkel, B. Seaman, K. Harrell, J. Palma, J. D. Hettinger, S. E. Lofland, A. Ganguly, M. W. Barsoum, Z. Sun, S. Li, and R. Ahuja, Phys. Rev. B 70, 085104 (2004).
- ³¹S. E. Lofland, J. D. Hettinger, K. Harrell, P. Finkel, S. Gupta, M. W. Barsoum, and G. Hug, Appl. Phys. Lett. **84**, 508 (2004).
- ³²P. Finkel, M. W. Barsoum, J. D. Hettinger, S. E. Lofland, and H. I. Yoo, Phys. Rev. B 67, 235108 (2003).
- ³³S. E. Lofland, J. D. Hettinger, T. Meehan, A. Bryan, P. Finkel, S. Gupta, M. W. Barsoum, and G. Hug, Phys. Rev. B 74, 174501 (2006).
- ³⁴S. Amini, A. Zhou, S. Gupta, A. DeVillier, P. Finkel, and M. W. Barsoum, J. Mater. Res. 23, 2157 (2008).
- ³⁵T. H. Scabarozi, A. Ganguly, J. D. Hettinger, S. E. Lofland, S. Amini, P. Finkel, T. El-Raghy, and M. W. Barsoum, J. Appl. Phys. **104**, 073713 (2008).
- ³⁶S. Amini, M. W. Barsoum, and T. El-Raghy, J. Am. Ceram. Soc. **90**, 3953 (2007).
- ³⁷B. Rupp, Scr. Metall. **22**, 69 (1988).
- ³⁸C. A. Swenson, J. Phys. Chem. Ref. Data **12**, 179 (1983).
- ³⁹NIST Standard Reference Material No. 736.
- ⁴⁰G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
- ⁴¹MedeA, 2.2.1 ed. (Materials Design, Angel Fire, NM).
- ⁴²G. Kresse and D. Jouber, Phys. Rev. B **59**, 1758 (1999).
- ⁴³P. E. Blöchl, Phys. Rev. B **50**, 17953 (1994).
- ⁴⁴J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. **77**, 3865 (1996).
- ⁴⁵Y. Le Page and P. Saxe, Phys. Rev. B 65, 104104 (2002).
- ⁴⁶M. W. Barsoum, C. J. Rawn, T. El-Raghy, A. T. Procopio, W. D. Porter, H. Wang, and C. R. Hubbard, J. Appl. Phys. 87, 8407 (2000).
- ⁴⁷S. R. Kulkarni, M. Merlini, N. Phatak, S. K. Saxena, G. Artioli, S. Amini,

- and M. W. Barsoum, J. Alloys Compd. (in press).
- ⁴⁸S. R. Kulkarni, M. Marco, N. Phatak, S. K. Saxena, G. Artioli, S. Gupta, and M. W. Barsoum, J. Am. Ceram. Soc. **90**, 3013 (2007).
- ⁴⁹N. V. Tzenov and M. W. Barsoum, J. Am. Ceram. Soc. **83**, 825 (2000).
 ⁵⁰T. El-Raghy, S. Chakraborty, and M. W. Barsoum, J. Eur. Ceram. Soc. **20**, 2619 (2000).
- ⁵¹M. W. Barsoum, I. Salama, T. El-Raghy, J. Golczewski, W. D. Porter, H. Wang, H. J. Seifert, and F. Aldinger, Metall. Mater. Trans. A 33A, 2775 (2000).
- ⁵²M. W. Barsoum, J. Golczewski, H. J. Seifert, and F. Aldinger, J. Alloys Compd. **340**, 173 (2002).
- ⁵³A. Krajewski, L. D'Alessio, and G. D. Maria, Cryst. Res. Technol. 33, 341 (1998).
- ⁵⁴S. R. Kulkarni, R. S. Vennila, N. A. Phatak, S. K. Saxena, C. S. Zha, T. El-Raghy, M. W. Barsoum, W. Luo, and R. Ahuja, J. Alloys Compd. 448, L1 (2008).
- ⁵⁵M. Radovic, A. Ganguly, and M. W. Barsoum, J. Mater. Res. 23, 1517 (2008).
- ⁵⁶C. R. Houska, J. Phys. Chem. Solids 25, 359 (1964).
- ⁵⁷N. A. Dubrovinskaia, L. S. Dubrovinsky, S. K. Saxena, R. Ahuja, and B. Johansson, J. Alloys Compd. **289**, 24 (1999).
- ⁵⁸H. O. Pierson, Handbook of Refractory Carbides and Nitrides (Noyes, Westwood, NJ, 1996).
- ⁵⁹H. P. Liermann, A. K. Singh, B. Manoun, S. K. Saxena, V. B. Prakapenka, and G. Shen, Int. J. Refract. Met. Hard Mater. 22, 129 (2004).
- ⁶⁰C. R. Hquska, J. Am. Ceram. Soc. 47, 310 (1964).
- ⁶¹H. P. Liermann, A. K. Singh, M. Somayazulu, and S. K. Saxena, Int. J. Refract. Met. Hard Mater. **25**, 386 (2007).
- ⁶²H. L. Brown, P. E. Armstrong, and C. P. Kempter, J. Chem. Phys. 45, 547 (1966).
- ⁶³A. I. Gusev, A. A. Rempel, and A. J. Magerl, *Disorder and Order in Strongly Nonstoichiometric Compounds: Transition Metal Carbides, Nitrides, and Oxides* (Springer, New York, 2001).
- ⁶⁴T. H. K. Barron, J. G. Collins, and G. K. White, Adv. Phys. 29, 609 (1980).
- ⁶⁵J. Wang and Y. Zhou, Phys. Rev. B **69**, 214111 (2004).
- ⁶⁶A. T. Procopio, M. W. Barsoum, and T. El-Raghy, Metall. Mater. Trans. A **31A**, 333 (2000).
- ⁶⁷B. Manoun, F. X. Zhang, S. K. Saxena, M. W. Barsoum, and T. El-Raghy, J. Phys. Chem. Solids 67, 2091 (2006).
- ⁶⁸A. Onodera, H. Hirano, T. Yuasa, N. F. Gao, and Y. Miyamoto, Appl. Phys. Lett. **74**, 3782 (1999).
- ⁶⁹J. E. Spanier, S. Gupta, M. Amer, and M. W. Barsoum, Phys. Rev. B 71, 012103 (2005).
- ⁷⁰D. L. Anderson and O. L. Anderson, J. Geophys. Res. 75, 3494 (1970).
- ⁷¹A. Jayaraman, B. Batlogg, R. G. Maines, and H. Bach, Phys. Rev. B 26, 3347 (1982).
- ⁷²L. Lopez-de-la-Torre, B. Winkler, J. Schreuer, K. Knorr, and M. Avalos-Borja, Solid State Commun. **134**, 245 (2005).
- ⁷³G. Hug, M. Jaoun, and M. W. Barsoum, Phys. Rev. B 71, 024105 (2005).
- ⁷⁴Z. M. Sun and Y. C. Zhou, Phys. Rev. B 60, 1441 (1999).
- ⁷⁵Z. Sun, S. Li, R. Ahuja, and J. M. Schneider Solid State Commun. 129, 589 (2004).
- ⁷⁶B. Holm, R. Ahuja, and B. Johansson, Appl. Phys. Lett. **79**, 1450 (2001).
- ⁷⁷Y. C. Zhou, Z. M. Sun, X. H. Wang, and S. Q. Chen, J. Phys. Condens. Matter 13, 10001 (2001).
- ⁷⁸J. M. Schneider, Z. Sun, R. Mertens, F. Uestel, and R. Ahuja Solid State Commun. **130**, 445 (2004).
- ⁷⁹J. Y. Wang and Y. C. Zhou, Phys. Rev. B **69**, 144108 (2004).
- ⁸⁰J. Y. Wang and Y. C. Zhou, J. Phys. Condens. Matter 16, 2819 (2004).
- ⁸¹Z. M. Sun, D. Music, R. Ahuja, and J. M. Schneider, J. Phys. Condens. Matter 17, 7169 (2005).